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Fig. 3. Oscillation threshold average gain coefficient as a function of LA N corresponds to the longitudinal modes.

For the purpose of this letter, we are only interested in evaluating

the order of magnitude of X. McGarr and Msop [8] have deter-
mined analytically and experimentally the reflection from vertical
boundaries, and they have shown that both n and r.z are of the same
order of magnitude as h/k, and that rz is many times larger than rl
(and both are negative for h<< k). Thus we can say that:

X w ih/h’ (3)

or in a normalized form:

XL N ihL/N (4)

where L is the length of the grating.

III. THRESHOLD OSCILLATION GAIN

Kogelnik and Shank [4] have derived the relation between the

coupling coefficient XL, the threshold gain coefficient g, and the
wave vector mismatch 6 (~ = B — L?O= difference between the
operating wave vector and the Bragg wave vector 27r/A ). Elachi

et at. [6] generalized their results to the case where there is gain gl
in the forward direction, and a different gain or loss g! in the back-
ward direction. This relation is

XL = &#/sinh (*L) (5)

* = [(g – jfi)z – x2]1/2

where

a = (91 + 92)/2.

Equation (5) has many solutions which correspond to the longitudi-

nal spectrum of dktributed oscillators [4]. In Fig. 3, we plotted the
average gain o required for oscillation se a function of L/h for two
values of h/A and for different longitudinal modes N. N = 1 is the
mode nearest to the Bragg frequency. The normalized coupling
coefficient was taken as equal to ihL/X2.

To illustrate let us consider the case where A = 3 p, A = 1.s ~,

and L = 2 mm. For h/A = 4 X 10–?, the average gain coefficient

needed for the first mode is ~ = 15 cm–l. For h/A = 10–2, then

~ = 6 cm-l. These correspond to ~ average relative imaginary wave
vector @;/g?, equal to 0.75 X 10–3 and 0.3 X 10–3, respectively. The
forward gain g should be well above these values (at least by a f actor

of 2 ) to account for the losses due to bulk wave radiations [9], [10]

which usually are small, and for the fact that the backward wave
is attenuated.

Bers and Burke [11], and Bers [12] have studied in detail the
resonant amplification of surface acoustic waves with electrons
drifting across a magnetic field with and without diffnsion. Referring
to their analysis and results it is clear that relative imaginary wave
vectors well above 1.5 X 10–3 can be achieved. To minimize the atten-
uation of the backward wave, the electron drift velocity 00should not
exceed by far the acoustic wave velocity v. because otherwise back-
ward resonant attenuation would occur at about the same frequency
as forward resonant amplification.

Taking vO/v= = 5, ~i/& is larger than 1.5 X 10–3 over a very wide

frequency band from about @lO-’COa-NO. lu. depending on the

magnetic field and the dHfusion coefficient. cecis the effective carrier
relaxation frequency [11 ], [12].

IV. CONCLUSION

Even though the preceding study is approximate, it is clear that
DFB oscillation can be achieved in surface acoustic wave amplifiers.
Surface corrugations with periods as short as 0.1 p have recently
developed using holographic techniques [133. Thus ultrahigh fre-

quency oscillators could be developed if semiconductors with high
enough relaxation frequency, and low-diffusion coefficients are

available.
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Surface Acoustic Wave UHF Interferometer

GENE CHAO AND LOUIS BREETZ

Absfracf—A 330-MHz surface acoustic wave (SAW) interferom-

eter is described. The delay for the interferometer is provided by

a 6.67-Ms ST quartz SAW delay line. The interferometer is capable

of 50-dB nulls of 150-kHz periodlcity over a 1O-MHZ instantaneous

bandwidth.
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Fig. 1. Schematic of SAW interferometer circuit. For input signal
Al exp (j@t), output signal is AJ1 + exp ( -jar] exp (jcot ), where r
is the time delay of the SAW delay line.

Fig. 2. Response of SAW interferometer circuit. (a) Linear amplitude
versus frequency: ordinate is relative amplitude, abr$issa is 2.0
MHz /division, fo = 330 MHz. (b) Logarithmic amphtude versus
frequency: ordinate is 10 dB /division, abscissa is 100 kHz /division,
the sweep time of 10 s/division was still too fast to record actual nulls.
(c) As in (b): ordinate is 10 dB /division, abscissa is 10 kHz/division,
sweep time is 10 s/division. (d) Amplitude, lower trace, [and phase,
uPPer traCe] versus frequency: ordinate is 10 dB /division [and 45° /
division], abscissa is fo = 333.880 MHz + 112 kHz. Nulls are 150
kHz apart.

The Federal Communications Commission has allocated portions

of the UHF band to the Federal Aviation Administration for use as
airline glide-path (g-p ) signals. These signals fall between 329.15
and 335.00 MHz with 150-kHz periodicityj and can interfere with

communications systems operating in close proximity to airports.
The purpose of thk letter is to describe a method of nulling these

signals.

It is well known that surface acoustic wave (SAW) delay lines
provide time delays some five orders of magnitude larger than
electromagnetic waves for the same physical length. In addition,
they suffer less loss per wavelength below 2 GHz. Several authors
have described SAW devices which make use of these properties
for highly selective bandpass filters and frequency discriminators
[1]-[3]. In this work we use a 6.67-w SAW delay line in an inter-
ferometer circuit to produce a series of periodic nulls 150 kHz apart.
The SAW delay line is made of 35 pairs of interdigital fingers placed
at each end of an ST quartz substrate. The fingers and interspaces
are each 2.3 pm wide. The basic circuit is shown in Fig. 1; it con-

sists of a simple interferometer circuit with a SAW delay line and
amplitude and phase controls to adjust the location and depth of

the interference nulls. The output consists of two signals of equal
amplitude with the phase of one varying as WT (output = AJ1 +
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exp ( —jcw ) ] exp (@) ). The transfer function of the device is of

the form A exp ( –jc07/2 ) cos (6M/2 ), where exp ( –@T/2 ) is a

delay term and cos (@T/2) gives the null information where the
null spacing is 1/, = A~. The limiting amplifier following the SAW

delay line is used to flatten the amplitude response through the
delayed arm in order to achieve deep interference nulls over the
entire band of interest. This was especially necessary since we used

a simple SAW delay line having a [(sin z) /z]2 frequency response
i_41. A further refinement would be to use a SAW rectangular band-
iiis filter [5].

The res~onse of the circuit is shown in Fig. 2. In addition to flat-

tening th~ response, the amplifier compens~tes for the 25-dB delay
line loss. Fig. 2 (a) is a linear amplitude versus frequency sweep

showing some 65 nulls between 325 and 335 MHz. Fig. 2(b) and

(c) is logarithmic amplitude versus frequency expanded views of
the null train. It was observed that even for the case of Fig. 2(b),
the frequency sweep was too fast for the spectrum analyzer to
record the actual values of the nulls. In Fig. 2 (c), a 65-dB null is
shown.

In a sample of 13 consecutive nulls, the deepest was 65 dB, the
shallowest 49 dB, and the mean 57.5 dB. If any one null is optimized,

better than 70 dB is achieved. It should be noted that a 50-dB null
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implies an unbalance of only 0.027 dB between the reference and
delayed arms of the interferometer, indicating that some type of
limiting maybe necessary even if aSAW bandpass filter is used.
Fig. 2(d) is an oscillogramof the amplitude and phase characteris-

tics of the interferometer. The phase is very linear, running from
+90”to –90°between each nu11.

In summary, the SAW interferometer described is capable of

50-dB nulls of 150-kHz periodicity over frequency bands limited

by the SAW transducers used. Theliniting amplifier provides the
dual benefit of ultraflat frequency response using standard

[(sin x)/x]’ transducers and enough gain to compensate for delay
line losses. Because the nulfe are extremely narrow and deep, most

of the UHF band involved remains available for use in communica-

tions systems. When a satellite navigation system receiving station
is unavoidably in the presence of the g-p transmission field, its
highly sensitive receiver can easily be blocked so that it would be
insensitive tothe low level CW (with Doppler shift) received from a

distant satellite. Each allocated 150-kHz-spaced g-p signal with
its narrowly spaced sidebands falls well within a deep rejection

notch. The frequencies of the satellite CW signals happen to fall
sufficiently outside these notches to be received at an acceptable

useful level.
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An Accurate Formula for the Gamma Function

L. LEWIN

Absfracf—The residue calculus method of investigation of certain

waveguide configurations makes use of the asymptotic properties

of the gamma function. Usurdly the range of the variables concerned

is such that this approximation is quite adequate. In a recent in-

vestigation of avery narrow waveguide juuction peculiar numerical

effects were traced to a condition where the variables were much too

small to warrant the use of the usual asymptotic formula. A new and

very simple modification extends the asymptotic form right down to

zero with an error of, at most, only a few percent.
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In the course of a recent investigation by the residue-calculus

method of a waveguide junction with a very large”dimensional ratio,

it was noticed that the numerical values of some of the coefficients
in the calculation were behaving quite differently from what was
expected. The matter was eventually traced to an inappropriate

use of the asymptotic formula for the 17 function. This is usually
given in the form, valid for large z,

Iogr(z) = (x –+)logz–z++ log (2?r)

{ }
+ &– &,+”.. . (1)

In the example the values of x to be used included some close to

zero, and although the correction series in I/x in (1) is not usually
utilized in these formulas it is clear that, even in truncated form,
(1) is useless so close to the origin. The departure from the antici-

pated values is therefore to be expected.
In the course of working out these features an amended formula

for the 1’ function was found. Although it only involves a simple

derivation from (1), it appears to be new, and is offered here in
case it has a wider use than the particular problem that gave rise

to it. It comes from incorporating the l/12z term with 1/2 log x

(somewhat after the manner of Pad6 approximations), and can be

written

10gr(z) = (z–l)lOg ~–~+*lOg (2=) +*lOg (~+*)

+ E(z). (2)

Here, E(z) is a correction term which is quite small for all positive

values of x, and can usually be neglected. For large z it is closely

approximated by (12z + 46/15) ‘z, but even for values right down
to z = O it remains sufficiently small to enable the dominant terms
in (2) to represent 17(z) to within about 2 percent. A graph of
E (z) from z = O to 2.5 is shown in Fig. 1.


